Implementing urban waterway transportation in city logistics
Agenda

- Introduction
- Theory
- Methodology
- Results/Analysis
- Discussion
- Conclusion
Introduction

- Urbanisation puts stress on urban supply chain
- Modal shift from road to waterway can be beneficial
 - Less pollution
 - Less congestion
 - Less accidents
Utilizing waterway transportation

Source: Haropa Ports Rouen
Utilizing waterway transportation

Source: Haropa Ports Rouen
Research question

- How can a **combined goods** and **waste** transportation system be **implemented** in urban supply chains utilizing inland waterways?
 - What are the drivers and barriers implementing waterway transportation?
 - How should the waterway supply chain be designed?
Gothenburg - Frihamnen

Source: Googlemaps 2016
Gothenburg - Frihamnen

Source: Göteborg Stad, 2016
Watch 2:48-2:59 min
https://www.youtube.com/watch?time_continue=235&v=IPbmlkvEwM0
Logistics and supply chain design

- Economies of scale
- Supply Chain Design
 - Adapted to
 - Type of product
 - Volumes
 - Requirements on load carrier
 - Factors choosing distribution network
 - Response time
 - Product variations
 - Product availability
Supply Chain Goals and Performance

- Delivery Service
 - Inventory level
 - Delivery precision
 - Delivery reliability
 - Delivery time
 - Delivery flexibility

- Environmental aspects of logistics
Distribution system

- Transport system efficiency
- Intermodal transportation
- Reverse logistics
Barge transportation Paris

Source: Flipo, E. (2013)
Barge transportation Paris

Source: Flipo, E. (2013)
Barge transportation Paris

Traffic

450,000 Km saved of 12,857 Paris Periféric

- 3,874 Trucks / year

- 35 AccidentsSaved / year

Air Quality

- 234 Tons of CO₂

- 23% NOx Azotes oxide

- 46% CO Carbon monoxide

- 43% hydrocarbures

Gas

88,500 L Gasoil Saved / year

Society saving

External costs saved per year

1 M€

Source: Flipo, E. (2013)

* Based on a full load of 48 containers
Barge transportation Paris

- Required Investments:
 - 73 specific containers
 - 14 trucks
 - 1,6 mio € reconditioning quay

- Parties involved:
 - Supermarket chain
 - Logistics provider
 - Specialists in transportation and cargo handling
 - Administrative organisations

- Success factors:
 - Close connections within partnering organizations
 - Working in small teams
 - Quick decisions
 - Location of distribution centre near inland waterway port
 - High volumes covering fix costs
 - Operational help from French legislation and the region
Floating distribution centre Paris

Source: Fluvialnet 2012
Floating distribution centre Paris

Source: Googlemaps 2016
Floating distribution centre Paris

- Project results:
 - 15 less heavy trucks per day
 - 51 mt less CO2 emissions
 - Less noise
 - Limited congestion
 - Improved utilization of infrastructure

- Success factors:
 - Avoiding:
 - Heavy goods eco-tax (above 3,5 mt)
 - Urban tolls
 - Air priority zones
 - Limited speed zones (20 km/h)
 - Limitation of delivery times by conventionally fuelled vehicles
 - Financial aid from inland waterway administration for ships crane and further upgrades
Methodology
What do you see?
Interviewees
Gothenburg - Frihamnen

Source: Googlemaps 2016
Results – Delivery system quality

- **Time**
 - Just in time
 - Transportation time
 - Delivery time windows
 - Response time

- **Sustainable**
 - Congestion
 - Emissions
 - Pollutant
 - Noise
 - Visual intrusion

- **Service level**
 - Delivery agreements
 - Delivery handling for customer
 - Predictability
 - Reliability

- Minimized storage
- High load factor
Drivers

- Political incentives
- Environmental drivers
 - Congestion
 - Pollution
 - Noise
- Technical development of vessels
- Public interests
Barriers

- **Economic** factors
 - Ownership of infrastructure
 - Financing infrastructure
 - Investment costs
 - Financial risk on logistics provider
 - Transshipment costs

- **Policies**

- **Lock-in** into existing systems

- **Market** demands

- **Change**

- **Operational** factors
 - Consolidation
 - Location
 - Adaption towards goods requirements
 - Visual intrusion
Discussion

- **Supply chain design** influenced by various factors:
 - Type of goods and waste
 - Compatibility of modes
 - Cargo handling time
 - Response time
 - Transportation time vs. Delivery time
 - Service level
 - Pollution (air, noise, visual intrusion)

- Strong barriers vs. weak drivers → emphasis on policy
Discussion

- Early planning required and high importance of close cooperation
- Key in logistics: economies of scale,
 - Short-term goals:
 - Start small
 - Show that it works
 - Build trust
 - Long-term goals:
 - Scale up
Conclusion

- **Supply chain design** dependent on various complex factors
- Time and cost
- **Strong barriers** have to be met with **strong drivers**
- Start small (**short-term**), scale up (**long-term**)
- Early **cooperation** and **collaboration** within different sectors