Urban freight system in a dense urban unit

Aako Raoofi
Master of infrastructure and environmental engineering
Supervisor: Sönke Behrends
Chalmers university of technology
June 7th, Gothenburg, Sweden
Agenda

- Problem description
- Theory
- Methodology
- Empirical data
- Result analysis
- Discussion
- Conclusion
Problem description

- Urban freight system: A system to transport goods
 - Basis for the existing life style
 - Key role in supply chain
 - Influence the final cost of a product
 - Impact on the efficiency of economy
 - Environmental impacts

- Sustainable future----sustainable urban freight system
Research question

- **Changes** are certain
- Sustainable development
- A **tool** to judge relative sustainability

Research question:
- What are the **criteria** for a **sustainable urban freight system**?!
 - What are the applications of these criteria for an urban freight system?
- Requires a thorough understanding of the system
 - What are the shortcomings and **impacts** of today’s system?
Thesis approach

Downstream impacts

Upstream causes

Sustainability criteria for urban freight system
OECD:
“The delivery of goods in city and suburban areas, including the reverse flow of used goods in terms of clean waste”
Sustainability criteria

- Sustainable development
- What is sustainable and what is not?

- Belkema (2002)
 - “Translation of future generation demands into set of functional and operational criteria”

- Sahely (2005) — Urban infrastructure
- Foxon (2002) — UK water industry
Research Design

- Systematic combining
 - Analytical framework: **Urban freight system**
 - Theory: **Models, tools**
 - The case: **DenCity**
 - The empirical world: **Interview, observation**

Source: Dubois and Gadde, 2002
Data collection

- Literature review
- Interviews
- Observation in workshops and meeting
Interview

- Preparation:
 - Socio-technical systems
 - Sustainability transitions
 - Multi level perspective
 - Sustainability criteria

- Interview
Collected data

Basic human needs
 - Habitat loss
 - Users’ awareness
 - Segregated solutions
 - Policy
 - Rigid infrastructure
 - Quality of life
 - Market
 - Security
 - Economic development
 - Adoptable
 - Culture
 - Obstacle for innovations
 - No tough regulations
 - Time loss

To act versus to talk
 - Infrastructure
 - Visual intrusion
 - Health
 - Costumer acceptance
 - Landuse planning
 - Rigid transportation network
 - Emission
 - Non-renewable energy
 - Livability
 - Noise

Global warming
 - Future generation demands
 - Evaluation
 - Public awareness
 - Cheap unsustainable solutions
 - Revenue model
 - Equity impact
 - Stress on environment
 - Damage to infrastructure

- Market is driving policy
- Resource consumption
- Non-homogenous system
- Space efficiency
- Car dependency
- Non-renewable energy
- Consequences are unknown
- Basic human needs
- Time loss
- User behaviors
Process

<table>
<thead>
<tr>
<th>Downstream impacts</th>
<th>Upstream cause</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liveability</td>
<td>High interaction between vehicles and sensitive areas</td>
<td>Minimum interaction between vehicles and residents while providing adequate and high quality services.</td>
</tr>
<tr>
<td>Time loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability Criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum interaction between vehicles and residents while providing adequate and high quality services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High quality of services that are equitably available, accessible, and affordable by all at all levels regardless of the gender, background, ethnicity, and economic status.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Should be durable, flexible and adoptable to changes at a reasonable cost.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions should be lowered to the level that do not violate the nature’s closed loops.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material and resource usage should be efficient, effective, and in the limit of earth tolerance capacity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides homogenous and inter connected districts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision making should be participatory and inclusive at all levels while having a holistic view over the system.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

❖ Criteria

❖ Abstract or operational?
❖ Abstract or realistic?
❖ Guidance or solution?
❖ Simple and comprehensive

❖ Barriers

❖ Fragmented solutions
❖ Main focus on passenger transportation
❖ Rigid infrastructure
❖ Normative trends are dominant
❖ Market is major driving force
Conclusions

- A tool to **evaluate** relative **sustainability**
- **Incorporate sustainability** in our practices
- **Development** versus growth
- **Mindsets**
- **Flexible** platforms
- Sustainable urban freight system for a sustainable city
Thank you!