Freight Transport Modelling and Sustainability Assessment Supporting Urban Freight Decision Making

Sebastian Bäckström, IVL Swedish Environmental Research Institute Sönke von Wieding, ZHAW Zürich University of Applied Sciences HITS Scientific Research seminar | 25 October 2023

Urban freight deliveries are a very heterogeneous activity

- Diverse vehicles, goods, load units, actors, receiving environments and urban forms
- Predicting the sustainability impact of new logistics solutions is crucial for exploring design options, policy, and business decisions
- Data for total goods and delivery traffic into a city area usually not available
- Need for urban freight data and holistic models for impact assessment

Research Goal: to develop an assessment model for estimating the socio-economic benefits of innovative logistics solutions

Assessment model

Modelling process – data in/output

Three case studies

Three city areas with different size and demand structure

• Mainly retail and offices

Modell application to NoHa

Model validation: Traffic count

- Registration of all incoming and outgoing freight vehicles 06:00 – 21:00
 - manual observation
 - reg. plate recognition cameras
 - pneumatic tube counter
- Fair data output given the high traffic volumes at several stations

Pc	osition	Plate ID	Time	Direction	
	20	ASW K 57	18:23:06	IN	
	19	ASX93A	15:26:00	IN	2 minuto through traffic
	21	ASX93A	15:27:56	OUT	2 minute through traine
	17	ASY83F	09:32:00	IN	
	14	ASY83F	09:39:33	OUT	
	21	AT 4 406	21:26:30	OUT	
	21	ATO39A	15:46:37	OUT	

Model validation: Traffic count NoHa

	0===000	-		
	Truck	SBT	Van	TOTAL
Persontransporter (P)	0	0	0	0
Godstransporter väg (T)	103	92	103	297
Own Account WholeSale and Manufacturing (OA)	59	77	133	268
Hotell Restaurant Catering (HORECA)	0	8	13	21
Service & hantverkare (S)	3	5	36	44
Waste and Recycling (WR)	1	0	0	1
Construction (C)	10	19	117	146
Office och Samhälle (O)	0	0	1	1
Detaljhandel Shops (SH)	0	8	8	16
Godsleveranser	162	176	248	587
Non-delivery	14	32	163	209
Total	177	208	411	795

Results

Gothenburg within Vallgraven

Model deviation from measured traffic: -10% to +10% (Total traffic: +1%)

Model deviation from measured traffic: -20% to +20% (Total traffic: +10%)

Model deviation from measured traffic: -30% to +20% (Total traffic: -5%)

HealPallet/roller cages delivery byHealtrucks

Results: Pallet deliveries

- Business as usual: Daytime deliveries
- Sc B1 Off-peak deliveries: no congestion, higher noise unit costs
- Sc B2 Suburban consolidation: Consolidating pallets at hub into larger trucks

Conclusions

Validated assessment model

- Simple model (Excel)
- Estimates the delivery traffic into an area and its socio-economic impact
- Enables analysis of the sustainability potential of logistics measures, e.g.
 - Electrification
 - Consolidation
 - Off-peak deliveries
- Limited data needs

Experiences from model development & validation

Good data availability

OK

- Demand estimation (Step 1)
- Impact assessment (Step 3)

Remaining Challenges

- Route and load data (Step 2, driver interviews)
- Validation (traffic count)
 - Data loss (manual and automatic)
 - Data cleaning (work intensive)

Relevance of study area design

- Size and type of area (not too small)
- Network context (avoid through-traffic routes in the area)

Observations from the traffic count

Observations from traffic count Thursday 230608

				er ⁱ	
	Truck	SBT	Van	Total	Share
Incoming traffic, total	402	1047	3 035	4 484	
Only visit in NoHa	14	32	163	209	5%
Delivery in NoHa	162	176	248	587	13%
Through traffic	225	839	2 624	3 688	82%
Share of incoming OK for env. zone kl. 3	13%	3,5%	9%	8%	

Unique vehicles **NOT** ok for MK3

Truck	SBT	Van
235	560	1900

Next step

- Apply the model to scenarios developed in WP3 different options to co-load cargo into the area.
- Finalize scientific article presenting the work

Thank you!

Sebastian Bäckström

IVL Swedish Environmental Research Institute sebastian.backstrom@ivl.se

Sönke von Wieding

ZHAW Zürich University of Applied Sciences soenke.vonwieding@zhaw.ch

HITS 2024

Extra slides

- Map over NoHa
- Simple example of model calculation

Modelling process - Example

