Skip to main content

AI Enhanced Mobility

AI Enhanced Mobility

AI Enhanced Mobility is a collaboration project where we will together build knowledge, experience and new collaborations within AI application for the sustainable mobility system of the future. The project is important for applying AI in the field of mobility and deepening collaborations between AI and mobility actors. The vision is that Sweden takes a leading role in the development of a future mobility system for people and goods that is sustainable, safe and accessible to everyone.

What do we want to achieve?

The overall goal of AI Enhanced Mobility is to build experience, knowledge and new collaborations in applied AI within the mobility system to create conditions and solutions for the sustainable mobility system of the future.
After the end of the project period, the project should:

  • Generated project in AI
  • Create a long-term plan to take the solutions within the project further
  • Expanded and built further network of organizations from the AI ​​and mobility field, representing private sector, academia and public sector
  • Created increased knowledge and awareness of AI and its potential for the mobility sector

Why

In the first phase of AI Driven Mobility, the great potential that Artificial Intelligence (AI) enables to improve the efficiency and societal benefit of the mobility system of the future was made visible. AI is a driving technology for innovation, growth, and social change, and in the long run AI will change the mobility and transport system as well as society in general.

AI has already made an impression in many areas, the technology is ready for concrete applications and now it is above all about getting started. The vision is that Sweden takes a leading role in the development of a future mobility system for people and goods that is sustainable, safe and accessible to everyone. In order to succeed, completely new collaborations between AI and mobility experts and increased AI knowledge in the field of mobility are required.

AI Enhanced Mobility is an important catalyst for accelerating the development of AI solutions in the field of mobility. The project creates new collaborations and projects, increases AI knowledge in the mobility area and creates synergies with existing initiatives and resources. The project is based on active participation from all parties, a needs-driven approach and cross-linking of AI and mobility competencies.

How

The majority of the investment is carried out in focus groups where mobility actors and AI experts gather to jointly create project ideas and build knowledge. The project finances a number of feasibility studies that will lead to full-scale projects in the area.

AI Enhanced Mobility is a strategic and in-depth collaboration between AI Sweden, Drive Sweden, SAFER and CLOSER. By bringing together strong networks and knowledge nodes within AI, Mobility, Traffic Safety and Freight Transport, the conditions are created for competence in the mobility area and the AI ​​area to be cross-linked and for domain knowledge to be interconnected. The collaboration also enables completely new collaborations and contacts to be made possible, both nationally and internationally.

AI Enhanced Mobility is financed via Drive Sweden, a joint venture by Vinnova, Formas and the Swedish Energy Agency.

Parties in the project are: Asymptotic AB, Chalmers University of Technology, China-Euro Vehicle Technology AB (CEVT), Conzens AB, Embedl AB, Halmstad University, Iboxen, Lindholmen Science Park AB, Linköping University, Malmeken AB, Malmö University, Region Örebro, RISE AB, Schenker AB, Smart Eye AB, SSPA, Svanberg and Svanberg, VTI, Technolution AB, Technical University of Jönköping AB, The Train Brain, Trafikverket, Universes, University of Borås, University of Skövde, Viscando AB, Volvo Cars, Volvo Group, Västtrafik AB, Zenseact & Örebro University.

Take part in approved projects

styr och ställ

Säker inkluderande trafikinfrastruktur: data och AI för beslutsfattande (SINTIA)

Denna förstudie tar det första steget i att bygga en empiriskt och vetenskapligt stödd metodik för beslutsfattande inom området för utveckling av väginfrastruktur. Metodiken, baserad på AI-aktiverade...
Buss

Prediktering av störning i kollektivtrafiken

Förutse trafikstörning och följdeffekter av trafikstörning. Kan vi förutse en störning och dess följdeffekter har vi goda förutsättningar att både förbättra och effektivisera våra arbetssätt och...
Iboxen

Datadrivet beslutsstöd för lokalisering av upphämtningsplatser

Datadrivet beslutsstöd för lokalisering av upphämtningsplatser ska utveckla ett datadrivet beslutsstöd för effektiv lokalisering och uppföljning av upphämtningsplatser i form av leveransombud och...
Öga

Förbättra trafiksäkerheten genom avancerade och automatiska körutvärderingar med hjälp av AI och ögonspårning

Syftet med projektet är att förbättra trafiksäkerheten genom avancerade och automatiska körutvärderingar med hjälp av AI och ögonspårning.
busshållplats

Uppmärksamma sårbara trafikanter

Syftet med projektet är att få en förståelse för trafikanters avsikter som fotgängare, cyklister och skoterförare runt busshållplatser för att förbättra säkerheten i trafiken.

News

If you have questions, don't hesitate to get in touch

Kvinna i fin blus mot tegelvägg

Ulrika Holmgren

Project manager